Nijboer-Zernike phase retrieval for high contrast imaging
نویسندگان
چکیده
We introduce a novel phase retrieval method for astronomical applications based on the Nijboer-Zernike (NZ) theory of diffraction. We present a generalized NZ phase retrieval process that is not limited to small and symmetric aberrations and can therefore be directly applied to astronomical imaging instruments. We describe a practical demonstration of this novel method that was recently performed using data taken on-sky with NAOS-CONICA, the adaptive optics system of the Very Large Telescope. This demonstration presents the first online on-sky phase retrieval results ever obtained, and allows us to plan subsequent refinements on a well-tested basis. Among the potential refinements, and within the framework of high-contrast imaging of extra-solar planetary systems (which requires exquisite wavefront quality), we introduce an extension of the generalized NZ to the high-dynamic range case, and particularly to its use with the vector vortex coronagraph. This induces conjugated phase ramps applied to the orthogonal circular polarizations, which can be used to instantaneously retrieve the complex amplitude of the field, yielding a real-time calibration of the wavefront that does not need any other modulation such as focus or other deformable mirror probe patterns. Paper II (Riaud et al. 2012, A&A, 545, A151) presents the mathematical and practical details of the new method.
منابع مشابه
Extended Nijboer-Zernike approach to aberration and birefringence retrieval in a high-numerical-aperture optical system.
The judgment of the imaging quality of an optical system can be carried out by examining its through-focus intensity distribution. It has been shown in a previous paper that a scalar-wave analysis of the imaging process according to the extended Nijboer-Zernike theory allows the retrieval of the complex pupil function of the imaging system, including aberrations as well as transmission variatio...
متن کاملExtended Nijboer-Zernike approach for the computation of optical point-spread functions.
New Bessel-series representations for the calculation of the diffraction integral are presented yielding the point-spread function of the optical system, as occurs in the Nijboer-Zernike theory of aberrations. In this analysis one can allow an arbitrary aberration and a defocus part. The representations are presented in full detail for the cases of coma and astigmatism. The analysis leads to st...
متن کاملDemonstration of an optimised focal field with long focal depth and high transmission obtained with the Extended Nijboer-Zernike theory.
In several optical systems, a specific Point Spread Function (PSF) needs to be generated. This can be achieved by shaping the complex field at the pupil. The Extended Nijboer-Zernike (ENZ) theory relates complex Zernike modes on the pupil directly to functions in the focal region. In this paper, we introduce a method to engineer a PSF using the ENZ theory. In particular, we present an optimizat...
متن کاملArtifact characterization and reduction in scanning X-ray Zernike phase contrast microscopy.
Zernike phase contrast microscopy is a well-established method for imaging specimens with low absorption contrast. It has been successfully implemented in full-field microscopy using visible light and X-rays. In microscopy Cowley's reciprocity principle connects scanning and full-field imaging. Even though the reciprocity in Zernike phase contrast has been discussed by several authors over the ...
متن کاملHigh spatial resolution hard X-ray microscope using X-ray refractive lens and phase contrast imaging experiments
A high spatial resolution X-ray microscope was constructed using an X-ray refractive lens as an objective. The spatial resolution was tested using 18 keV X-ray. A 0.4 mm line and 0.4 mm space tantalum test pattern was successfully resolved. Using the similar setup with the addition of a phase plate, a Zernike type phase-contrast microscopy experiment was carried out for the phase retrieval of t...
متن کامل